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Abstraet-A new fuzzy model-based predictive control scheme was developed to control a nonlinear pH process. 
The control scheme is based on the Takagi-Sugeno type fuzzy model of the process being controlled. In the present 
fuzzy model predictive control method, the process model maintains a linear representation of the conclusion parts 
of fuzzy roles. Therefore, it has a significant advantage over other types of models in the sense that nonlinear pro- 
cesses can be handled effectively by embedding the linear characteristic. The fuzzy model of the pH process to be 
controlled was constructed and used in the predictive control algorithm. Results of computer simulations and experi- 
ments demonstrated the effectiveness of the present control method. 
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INTRODUCTION 

In many industrial areas, pH neutralization processes are 
widely used. The pH neutralization process is a typical non- 
linear process, and satisfactory control performance can hardly 
be achieved by conventional controllers. Various control meth- 
ods to control pH processes have been proposed including clas- 
sical PID control schemes, adaptive control methods, gain- 
scheduling methods, genetic control algorithms and model bas- 
ed control strategies [Sing and Postlethwaite, 1997; Katarina 
et al., 1997; Charles and Edward, 1993; Lee et al., 1994; Loh 
et al., 1995; Henson and Seborg, 1994; Park et al., 1995]. Dif- 
ficulties in the pH control problem arise mainly from its heavy 
nonlinearity and uncertainty. The increasing research efforts in 
recent years are due to the highly nonlinear character coupled 
with the rather simple mathematical model to make pH con- 
trol suitable for illustrating new nonlinear control approaches. 

As new control strategies, uses of black-box type models 
such as fuzzy or neural network models have attracted much 
attention for modelling and controlling highly nonlinear chem- 
ical processes. In the fuzzy control method, qualitative control 
algorithms are presented in the foma of IF-THEN rules which 
are evaluated based on fitzzy inferences. Fuzzy control systems 
have some advantages over other control methods in the con- 
trol of inherently nonlinear chemical processes. Two different 
approaches can be used in a fuzzy control scheme. The first 
approach is based on the utilization of fuzzy control rtdes ob- 
tained from the simulations of human control activities. This ap- 
proach employs heuristic sets derived fi'om operational knowl- 
edge of the operator. The output of the controller can be de- 
termined by the manufacawer of the controller according to the 
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process conditions to be controlled. But, in this approach, a 
large amount of accurate operational knowledge is required 
to define perfect control rules for satisfactory control perfor- 
mance. In the second approach a fuzzy model is obtained first 
from the input and output plant data. The fuzzy controller is 
constructed by the implementation of a linear control scheme 
into the fuzzy model. This approach was originally proposed 
by Takagi and Sugeno [1985] and is characterized by the use 
of control rules derived from fitzzy model hales. 

Recently, many pH control schemes based on the fuzzy 
model have been proposed. Katarina et al. [1997], obtained 
a fuzzy model for nonlinear pH processes and employed the 
DMC algorithm to control pH processes. Park [1995] also de- 
rived a fuzzy model of a pH process and developed an op- 
timal trajectory control method for the pH process based on 
the fuzzy model. Sing et al. [1997] adopted fuzzy relational 
models (FRMs) to implement a predictive control scheme for 
the control of pH processes. 

In this paper a new model predictive control scheme based 
on the fuzzy model is developed to control the pH neutraliza- 
tion process. It is well known that a moderate nonlinear pro- 
cess can be controlled satisfactorily by the linear model predic- 
tive controller. But, for the control of processes showing severe 
nonlinearity, such as the pH process, acceptable control perfor- 
mance cannot be obtained from the use of linear schemes. The 
validity of the fuzzy model developed is tested through com- 
puter simulations. A control algorithm based on fuzzy rules is 
designed and the effectiveness of the proposed control method 
is demonstrated both by simulations and by experiments. 
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DYNAMIC MODEL OF THE pH PROCESS 

The pH process used in the present study, shown in Fig. 1, 
is based on the model developed by Loh et al. [1995]. The 
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Fig. 1. Typical pH process. 
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rates of changes of acid and base compositions are given by 

V~dt~=FoC~-(F~+F~lx, (I) 

dXb + 
V-di- =FbC~-(Fo Fb)x~ (2) 

where F~ is the inlet flow rate, Fb is the flow rate of the base 
solution, Ca is the acid concentration in inlet flow, Cb is the base 
concentration of the titrating stream, and x, and xb are concen- 
trations of acid and base solutions, respectively. The ionization 
reactions are given by 

H20<--->H++OH- 
HAC<--->H++AC - 
NaOH~Na++OH - 

For the condition of electrical neuWality to be maintained the 
summation of electrical charges of each ion in the solutions 
should be zero, i.e., 

[Na § + [H +] = [AC-] + [OH-] (3) 

where [X] denotes the concentration of ion X in the solution. 
The equilibrium can be represented by using equilibrium con- 
stants K~ and K~ such as 

[AC-] [H § ] 
IG= [HAC] ' Kw=[H+][OI-I-] (4) 

Now we can define acid and base concentrations x~ and Xb 
as 

xo = [HAC] + [AC-], x~ = [Na +] 

Using these definitions we have from (3) and (4) 

[H +] + [H+12{IG+x~} + [H+]{tG(x~-xo)-K~}-KJG = 0 (5) 

From the definition of pH=-log~o[H§ pI~=-log~oIQ, the ti- 
tration curve is represented as 

Xb+10-#H 10PH-t4_ X~ 
1 + 10 pK~ (6) 
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Fig. 2. Dynamic model response of pH process. 
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Fig. 3. Steady-state titration curves. 

t 

For the dynamic modeling, we assumed perfect mixing of 
acid and base solutions, constant density and instantaneous re- 
action. Figs. 2 and 3 show results of simulations based on the 
dynamic model of the pH process. Fig. 2 shows the response 
of the pH process to variations of the base flow rate, and Fig. 
3 demonstrates steady-state titration curves for various opera- 
tion situations. 

FUZZY MODELING OF T H E  pH PROCESS 

1. Takagi-Sugeno Fuzzy Model 
In order to identify a fuzzy model of the pH process we a- 

dopted the Takagi-Sugeno type model [Takagi and Sugeno, 
1985]. In this type of model the input space is divided into 
several fuzzy subspaces and the input-output relations of each 
of the subspaces are represented by linear equations. The rela- 
tionship between inputs and outputs of the nonlinear system is 
given by the weighted summation of these linear equations. 

A fuzzy system is a mathematical model which can realize 
nonlinear mapping to an arbitrary accuracy. Like neural net- 
work and universal function approximation, numerous appro- 
aches have been proposed for constructing fuzzy models from 
input-output data. Compared to other nonlinear approximation 
techniques, fuzzy models provide a more transparent repre- 
sentation of the identified model. 

Suppose the rules of a fuzzy system are as follows : 
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R/: If x I is A1 and x2 is B1 Then yl=f/(xl, x2) 

where x~ and x2 are input variables of the fuzzy system, y~ is an 
output variable and Az and B~ are fuzzy sets characterized by their 
membership functions. The If-part of the rules describes fuzzy 
regions in the space of input variables and the Then-part is a func- 
tion of the inputs, usually in the linear form of 

fl(Xl, X2) = a~Xl+b/xa+r/ 

where a,, b, and rz are consequent parameters. Such a simplified 
fttzzy model can be regarded as a collection of several linear 
models applied locally in the fuzzy regions defined by the rule 
premises. 
2. Fuzzy Modeling of the pH Process 

In terms of Takagi-Sugeno fuzzy rules, the fuzzy model has 
the form 

R" " If  y(t) is A~ . . . . .  y( t -k)  is A~ 
k l 

then y(t+ 1)=~ p,"y(t-i)+j~ o2u(t-j) (7) 

where n is nth fuzzy rule (n=l, --., M), k is the order of output, 
m is the order of input and A7 is the membership function of 
the fuzzy set. 

The model output y(t+l) estimated by rule (7) can be re- 
presented as 

W~+lyk(t+ 1 ) 
k = l  ( 8 )  

•(t+ 1) ~ w,k+l 

k= l  

where w is given by 
n 

w ' :  II g~j(xj) (9) 
J = l  

As can be seen, the conclusion parts of the fuzzy model 
of pH process are of the form of the ARMA equation. The 
membership functions are constructed by dividing the output 
space within the operational range. The type, position, and 
number of the membership functions can be determined by 
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Fig. 4. Membership functions for pH. 
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Table 1. Membership function values 

Left point (pH) Right point (pH) 

A1 0.0 5.5 
A2 3.0 8.5 
A3 5.5 11.0 
A4 8.5 14.0 
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Fig. 5. Validation of the fuzzy model for simulation. 
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Fig. 6. Validation of the fuzzy model for experiments. 

lustering, neural network, genetic algorithm and complex 
methods. Fig. 4 and Table 1 show membership functions for 
the pH process. 

The well-known least squares method or recursive least 
squares method can be used to determine the parameters of 
the conclusion parts of the fuzzy model. For the on-line ad- 
justment of parameters only the recursive least squares method 
is used in this study. In order to verify the fuzzy model ob- 
tained, we compared the behavior of the present fuzzy model 
with that of the dynamic model of the pH process and the 
actual pH process. Results are shown in Figs. 5 and 6. As can 
be seen, the present fuzzy model follows even the behavior of 
the experimental pH process very well. This fact demonstrates 
the effectiveness and usefulness of the present fuzzy model 
in the model-based control of the pH process. 

FUZZY MODEL PREDICTIVE C O N T R O L  

In the model-based predictive control future, the prediction 
of outputs is based on the dynamic process model to be con- 
trolled. Control commands to be applied at the present time 
are given by the minimization of the cost function composed 
of prediction errors and control inputs. Fig. 7 shows the basic 
structure of  the general model predictive control method. In 
the predictive control method, the process output is forced to 
follow a desired output trajectory to be reached at the set point 
within a fixed time horizon in the future, as shown in Fig. 8. 

The main idea of our approach is to combine the advantages 
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Fig. 7. General structure of model predictive control. 
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Fig. 8. Desired output trajectory. 

of the fuzzy model and the general predictive control scheme 
in a way that is fast enough and suitable for real-time imple- 
mentation. One of the authors proposed some predictive con- 
a'ol strategies especially for bilinear processes [Lo et al., 1991; 
Oh et al., 1995; Yeo et al., 1989]. 

The cost function for the predictive control strategy con- 
sidered here can be represented as 

J(N~,N2) =E{j~ [y(t+j )-w(t+j)]2 +j~ X(j )[Au(t+j- 1)]Q 

(10) 

where N1 is the minimum cost interval, N: is the maximum cost 
interval and ~(j) is the weighting vector on the control inputs. As 
the desired output trajectory a first-order delay model given by 
(11) is widely used. 

w(t) =y(t), 

w(t+j) = o~w(t+j- 1 ) + ( 1 - a ) w  
J= 1,2 ..... 0<ct< 1 (11) 

In the fuzzy model predictive control method, the future 
outputs are estimated by using the fuzzy model of the pro- 
cess to be controlled, and control commands are computed by 
a similar procedure as in the general predictive control meth- 
od. Fig. 9 shows the basic structure of the fuzzy model pre- 
dictive control scheme. 

In the fuzzy model predictive controller the model param- 
eters vary according to sampling times because of the varia- 

W 
u(t) 

Plant 

I 
[y(t) 

4 ~ -  

Fig. 9. Basic structure of fuzzy model predictive control method. 

ions in the suitability of fttz~ rules. For example, if the con- 
clusion part of a fuzzy role is given by (12) 

yk(t+ 1 ) = p0~y(t) + p,*y (t-  1 ) + q0*u(t) + qfu(t- 1 ) (12) 

and the prediction period N is 3. Predicted outputs are given by 
(13)-(15). 

~,(t+ 1) =t3~y(t)+illy(t-1)+~u(t)+qlu(t-1) (13) 

~(t + 2) = t3]y(t + 1 ) +I31~y(t) + c]0u(t + 1 ) + ~l~U(t) (14) 

.~(t+3) = 1303y(t+2)+t3~y(t+ 1) +~llU(t+2)+~u(t+ 1) (15) 

where 

WLa ^ k  
W t + l  M 

ZwL, 

M 

.= W t + l p ,  

M 

k=l Wt+tq, 
( i=0  .... .  m) 

(j=0 .... ,n) 

The general output predictions can be obtained from a gen- 
eralization of the above relations and is given by 

Vv= GU~+HUp+FY~ (16) 

where YF is the future output vector, UF is the future input vec- 
tor, Yp is the past output vector and Up is the past input vector, 

Vg~0 0 . . - 0  7 
G=] g~g~ 0 ' ' "  ~ / 

i i i " .  ~ 
kg0 u g~ ... . . .  g;_J 

H - -  1 2 �9 
- -  : �9 �9 �9 

N N N Lhl h2 "-'h~ 

fl .-. 

The cost function used in the present fuzzy model predictive 
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control scheme is 

N 2 N 2 

J= ~ [~(t§ ~,(t)[u(t+j- 1)] 2 (17) 
J =N l 

From the substitution of (16) into (17) we have 

T § T 
J={(Y~-W) (Ye-W) t, UeUr} r 
={ (GU~+ HUp+FYp-W) r(GU~+HUp+FYp-W) +~,UpUe} 

(18) 

Without suppression on future inputs the input vector which 
minimizes the cost function (18) is given by 

Ur = (GrG+M)-IGT(W-HUp-FYp) (19) 

Only the first element of the input vector (19) is applied 
to the process at the present time t 

u(t) = gT(W-HUp-FY~) (20) 

where 

gr=[1 0 0 -" 0](GTG*M)-'G T (21) 

E X P E R I M E N T S  

Experimental conditions are summarized in Table 2. Fig. 10 
shows the experimental apparatus used in the present study. 
The flow rate of acid solution is maintained at a constant value 
by the acid pump while the flow rate of the base solution is 
adjusted by the pneumatic valve to achieve the desired pH 
value. The pH values measured by the pH sensor are sent to 
the noise filter to eliminate measurement noises. The control 
commands computed by the fuzzy model predictive control 
scheme described before are sent to the control valve via AD/ 
DA converter. 

The output space was divided into 4 subspaces to give the 
fuzzy subspace and the total prediction interval N was set to 
4. The linear relation which makes the conclusion part of the 
fuzzy rules consists of 6 elements : y(t), y(t-1), y(t-2), u(t), u 
(t-l) and u(t-2). These elements are updated by the recursive 
least squares algorithm. The sampling period was two seconds. 

RESULTS AND DISCUSSIONS 

Table 2. Experimental conditions 

Case (A) Case 03) 

H3PO4 (M) 0.01 0.005 
NaOH (M) 0.05 0.05 
Volume of reactor (/) 2 2 
Sampling time (sec) 2 2 
Limit time (sec) 6000 4500 
CPU (MHz) Pentium 166 Pentium 166 

(MMX) (MMX) 
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Fig. 10. Schematics of experiments. 

1. Simulations 
In order to validate the proposed fuzzy model predictive 

control method, computer simulations were performed for var- 
ious set point changes. The dynamic model developed before 
was used as the pH plant and the Takagi-Sugeno type fuzzy 
model was used in the prediction of future outputs. The out- 
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put space was divided into 4 subspaces to be used as fuzzy 
subspaces. The linear relationships of the conclusion parts of 
the fuzzy rules consist of second order output and second order 
input. Parameters were updated by the recursive least squares 
method. The set point was forced to vary between pH 6 and 
8 intentionally. 

Results of simulations are shown in Fig. 11 and 12. Fig. 
11 shows the results of  control simulations without introduc- 
tion of any noises. Even with frequent changes in set point, 
very good control performance could be achieved. Effects of 
random noises can be seen in Fig. 12. Random noises of mag- 
nitude 0.05 were assumed in the process with sampling pe- 
riod of one second. The control results seem to be contami- 
nated a little bit by the noises, which can easily be smoothed 
out by the use of an additional output filter, although not 
shown here. It is obvious that the control performance is not 
affected by random noises confined within a certain magni- 
tude. From the two figures, one can conclude that for this pH 
process, the fuzzy model has good dynamic performance and is 
also able to capture the steady-state relationship of the process. 
2. Experimental Results 

As in the simulations, the output space was divided into 4 
subspaces to be used as fuzzy subspaces. The linear relations 
of the conclusion parts of the fuzzy rules consist of 2 nd order 
outputs and inputs which are updated by the recursive least 
squares method. Sampling period was set to 2 seconds. Figs. 
13 and 14 show the results of on-line control experiments based 
on the proposed fitzzy model-based predictive control method. 
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Fig. 13. Experimental results (0.01 M I~PO4, 0.05 M NaOH) 
(A). 
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Fig. 14. Experimental results (0.005 M I-I3PO4, 0.05 M NaOH) 
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Phosphoric acid solution and NaOH solution were used as acid 
and base solutions, respectively. With constant concentration of 
the base solution (0.05 M NaOH), the concentration of acid 
solution was varied from 0.005 M to 0.01 M. Even with fluc- 
tuations in the acid concentrations, which are not usual in actual 
operations, very satisfactory control results are achieved. 

In order to demonstrate the performance of the present con- 
trol strategy even with the presence of extemal disturbances, 
we introduced changes into the flow rate of the acid solution 
with the set point being kept constant (=7.0). Results of the 
experiment are shown in Fig. 15. We can see that pH values 
of the outlet stream are confined within a permissible range, 
which means that effects of disturbances are well rejected. 

Within the whole range of operations, the pH values of the 
output stream follow the reference trajectory fairly well. The 
good control results indicate that the predictive controller re- 
ceives adequate information about the changes in process be- 
havior from the fuzzy model. 

C O N C L U S I O N  

In order to control a pH process, a new fuzzy model pre- 
dictive control method was proposed and tested through simu- 
lations and experiments. As the fuzzy model for the pH pro- 
cess to be controlled, the Takagi-Sugeno type fuzzy model was 
employed and combined with predictive control algorithm. The 
fuzzy model was tested and shown to give accurate predic- 
tions on process outputs. Because of the linear relations in the 
conclusion parts of the fuzzy rules, well-known linear predic- 
tion control algorithms can be easily utilized. From both com- 
puter simulations and on-line control experiments, we could 
confirm the effectiveness of the present fuzzy model-based pre- 
dictive control method. The fuzzy control scheme appears to be 
one of the most promising control strategies for nonlinear chem- 
ical processes, and the combination of the fuzzy techniques 
with neural networks is yet to be investigated. 

A C K N O W L E D G E M E N T  

This work was supported in part by the Korea Science and 
Engineering Foundation (KOSEF) through the Automation Re- 
search Center at POSTECH and in part by Hanyang University. 

Korean J. Chem. Eng.(Vol. 16, No. 2) 



214 K.-H. Cho et al. 

NOMENCLATURE 

R : fuzzy rule 
F a : flow rate of the influent stream 
F b : flow rate of the titrating stream 
xo : concentration of the acid solution 
Xb : concentration of the base solution 
Co : concentration of the influent stream 
Cb : concentration of the titrating stream 
YF : future output vector 
UF : future input vector 
Ye : past output vector 
Ue : past input vector 
y(t) : current process output 
u(t) : current control input 
w : weight or membership grade 
/2 : member function 
N1 :minimum output horizon 
N2 :maximum output horizon 
N : control horizon 
A0) : control-weighting sequence 
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